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Abstract
This paper extends classical object pose and relative

camera motion estimation algorithms for imaging sensors
sampling the scene through light-paths. Many algorithms
in multi-view geometry assume that every pixel observes
light traveling in a single line in space. We wish to relax
this assumption and address various theoretical and prac-
tical issues in modeling camera rays as piece-wise linear-
paths. Such paths consisting of �nitely many linear seg-
ments are typical of any simple camera con�guration with
re�ective and refractive elements. Our main contribution is
to propose ef�cient algorithms that can work with the com-
plete light-path without knowing the correspondence be-
tween their individual segments and the scene points. Sec-
ond, we investigate light-paths containing in�nitely many
and small piece-wise linear segments that can be mod-
eled using simple parametric curves such as conics. We
show compelling simulations and real experiments, involv-
ing catadioptric con�gurations and mirages, to validate our
study.

1. Introduction and motivation
The bending of light rays is a very common natural phe-

nomenon producing very many optical effects; re�ection on
water, refraction in a dew drop on a leaf, distortion of un-
derwater objects, shimmering on a road's surface, the blue
oasis in the desert, rainbows, lingering sunset, halo sur-
rounding the sun and twinkling stars are just a few exam-
ples. Despite the signi�cant progress made by the vision
and graphics communities toward realistic models, we are
still far from modeling the extreme complexity of light.

Many algorithms in multi-view geometry use either the
pinhole model, where light rays pass through a single op-
tical center, or a non-central model where every pixel is
mapped to an arbitrary projection ray. Non-central cam-
era models have been studied in the context of catadioptric
con�gurations [9, 17, 21, 28] and most multi-view geom-
etry algorithms have been extended to such models. Most
of these algorithms assume that a pixel is mapped to a sin-
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Figure 1.A setup with three planar mirrors and a camera facing
two of them is shown in (a). The light-path for a chosen pixel is
shown in (b). The main highlight of this paper is to extend the
classical pose and motion estimation algorithms for such paths
without any prior knowledge about the correspondence between
the scene point and the individual segment in the piece-wise linear
paths. We show a cube imaged using a pinhole camera in (c). By
sampling light along a parametric curve shown in (d), we synthe-
size the same cube in (e).

gle straight line in space. We wish to relax this assumption
and associate several piece-wise linear segments to a single
pixel and propose pose and motion estimation algorithms.
In particular we wish to study this problem without using
any prior knowledge about the segment of the light-path in-
teracting with the scene. One may wonder: Why is this
generality necessary? Consider Figure 1(a) where we show
a simple con�guration with three mirrors and a camera. Af-
ter two or three bounces with two mirrors, it becomes ex-
tremely dif�cult to know the correspondence between the
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scene point and its associated segment in the light-path.
There is a wide body of literature on reconstruction al-

gorithms involving specular objects [4, 30] (re�ective and
refractive)1. In specular stereo works [3, 20], the path of the
light ray, before and after re�ection, is studied to recover
the shape of mirror-like objects from two views. Ben-Ezra
and Nayar detect and reconstruct transparent objects from a
sequence of images taken under known motion [1]. Here,
a physics based modeling approach is taken to handle re-
fraction and to reconstruct the shape of transparent objects
in the form of super-ellipsoids. Kutulakos and Steger have
shown some inspiring results in reconstructing specular ob-
jects by recovering the path of a light ray after it undergoes
refraction [16]. In order to recover the light-path they use
reference 3D points whose coordinates are known with re-
spect to the camera. Although we also recover the light-
paths accurately using non-trivial techniques for investiga-
tion purposes, our main contribution is not the light-path
computation. Rather, we search for scene points on the dif-
ferent segments of the known light-path using pose estima-
tion and motion estimation algorithms. Chari and Sturm de-
veloped geometric entities like fundamental matrix for un-
derwater scenarios [5]. Seitz et al. [25] have investigated
the multi-bounce nature of light-paths for decomposing im-
ages and removing inter re�ections. Recently Kirmani et
al. [14] used multi-path analysis of light transport to recon-
struct the geometry of hidden regions, which are not in the
line of sight of the camera.

In this paper, we also investigate algorithms for light-
paths containing in�nitely many and small piece-wise lin-
ear segments that can be modeled using conics. Although
we are not familiar with any prior work for optical images,
Hartley and Saxena have used curved projection rays for
modeling SAR imagery [13].

We summarize our main contributions below:

² We develop pose and motion estimation algorithms for
cameras where each pixel samples light traveling in a
piece-wise linear path or a parametric curve. We refer
to these cameras as piece-wise linear model (PLM) and
parametric curve model (PCM).

² We show that the correspondence problem between a
scene point and the individual segments of the piece-
wise linear path can be mapped to the enumeration of
all the maximum cliques in an associated graph.

² The main contribution of this paper is an ef�cient algo-
rithm for PLMs that can work with a large number of
piece-wise segments. We propose an extremely useful
pairwise cheirality constraint that allows one to search
in the large solution space to solve light-paths with
�nitely many segments. In particular, we show that it

1We do not address the problem of diffusion where a single light ray
may get split into in�nitely many rays.

is possible to extend the pose estimation for light-paths
having more than 100 segments.

² We show compelling simulations and real experiments
to validate our theory for PLMs and PCMs. To work
with real images of mirages, we include a practical
method to compute the refraction parameters from an
image of a mirage.

Overview of the paper: In section 2 we introduce and de-
velop pose and motion estimation algorithms for PLMs. In
section 3 we propose an ef�cient search algorithm for �nd-
ing the correspondence between the individual segment of a
piece-wise linear light-path and a scene point. In section 4
we introduce and develop multi-view geometry algorithms
for PCMs. In section 5 we show simulations and real ex-
periments to validate our theory. We use simple camera
con�gurations with planar mirrors to show the results for
PLMs and use real images of mirages to demonstrate the
results for PCMs.

2. The piece-wise linear model
Every pixel samples light in a piece-wise linear path de-

noted by a sequence of 3D pointsP0; P1; :::; Pn wheren
is the number of segments. We refer to this path as PLP. In
Figure 1(a), we show a con�guration consisting of three pla-
nar mirrors and a camera facing two of them. The camera
is facing the back-side of one of the mirrors. For a chosen
pixel shown on the image, we trace the corresponding PLP.
It consists of the segmentsP4P3, P3P2, P2P1 andP1P0.
In a PLM all pixels are associated to such paths and we as-
sume that they are pre-calibrated. We refer to an object or
the scene as not being part of the PLM. As an object enters
the �eld of view of a PLM, every point on the object will
lie on multiple segments in various PLPs. This is the reason
for observing the same 3D point at multiple places in the
image. However, for a given pixel, the corresponding scene
point lies in general on only one segment of the pixel's PLP.
For example the scene pointS corresponding to the cho-
sen pixel resides on the segmentP4P3. In general it is not
easy to identify this association between the segment and
3D point even manually when there are multiple segments
in a light-path. We explore the feasibility of �nding this
correspondence automatically while we solve the pose and
motion estimation problems.

2.1. Pose Estimation
Given three correspondences between points in the world

and their projections on the images, the goal is to com-
pute the pose of the camera in the world coordinate sys-
tem. For the pinhole model, many solutions have been pro-
posed in the literature - Grunert [10], Fischler and Bolles
[8], Church's method [6], Haralick et al. [11], to name but
a few references. One can also compute pose using both
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points and lines [22], but in this paper we focus on only
points. Recently, there has been algorithms for developing
pose estimation using three points for non-central or gener-
alized cameras [19, 23]. In a generalized camera model, ev-
ery pixel is mapped to a projection ray in space along which
it samples light [9, 27]. Mathematically, the minimal pose
estimation problem is described as follows. Given 3 points
and 3 rays in different coordinate frames, �nd a rigid trans-
formation such that the points are incident with their cor-
responding rays. In this problem, the number of rays and
points is minimal for computing the transformation. This
algorithm gives 8 solutions in general and additional corre-
spondences are used to prune the ones inconsistent with the
other matches. This algorithm is generally employed in a
hypothesize-and-test framework such as RANSAC [8]. We
use this algorithm as the basic block for developing ours.

We brie�y describe the pose estimation problem for
PLMs. Given three scene points and their corresponding
pixels, thus their corresponding PLPs, our goal is to com-
pute a transformation such that each point lies on one of
the segments in its corresponding PLP. Once the correspon-
dence between points and line segments is established, we
may compute the pose using the above generalized pose es-
timation algorithm. A correct transformation could be eas-
ily veri�ed by checking if at least one segment of every PLP
contains the corresponding scene point. Thus the remaining
missing block in developing a pose estimation algorithm is
to compute the correspondence between the segments in a
PLP and its corresponding point. One can use a brute force
search strategy to generate a lot of poses and identify the
correct pose from them. However, this is infeasible when
there are many segments in each PLP. In section 3 we pro-
pose an ef�cient search strategy to solve the pose estimation
problem using a pairwise cheirality constraint. Without this
constraint, the exhaustive search is highly infeasible.

2.2. Motion Estimation
The underlying mathematical problem for generalized

motion estimation is brie�y described here: Given two sets
of 6 rays each, the goal is to rotate and translate one set such
that every ray in one set intersects its corresponding ray in
the other. Steẃenius et al. gave the solution for generalized
cameras that leads to 64 solutions [26]. We can use addi-
tional correspondences to prune the ones that are inconsis-
tent with other matches. This algorithm will be used as the
basic block for developing the motion estimation algorithm
for PLMs.

We brie�y describe the motion estimation problem for
PLMs. Given correspondences between two sets of 6 PLPs
in two cameras, the goal is to compute a transformation such
that one segment in a PLP from the �rst set intersects with
at least one segment in its corresponding PLP in the sec-
ond set. Once the correspondence between the segments
in every pair of PLP is established, we may compute the

motion using the above generalized motion estimation al-
gorithm. A correct transformation could be easily veri�ed
by checking if at least one segment of every PLP intersect at
least one segment of its corresponding PLP. Similar to the
pose estimation problem, we could employ a brute force
search to generate all possible correspondences. However,
this is even harder than the pose problem. Using a pairwise
cheirality constraint we reduce the search space and solve
the motion estimation.

3. The correspondence problem
We describe the correspondence problem for the pose es-

timation problem in detail. The algorithm for motion es-
timation can be analogously developed. In order to ef�-
ciently solve the correspondence problem we primarily use
one geometric constraint. This constraint is a pairwise one
where we can jointly check whether two point–PLP corre-
spondences can jointly hold true. In Figure 2(a),L P and
M Q are two segments from two different PLPs. In order
for the 3D pointsP andQ to correspond to segmentsL P

andM Q , the following condition must be satis�ed:

dmin
L P ;M Q

· dP;Q · dmax
L P ;M Q

(1)

wheredmin
L P ;M Q

and dmax
L P ;M Q

are the minimum and max-
imum Euclidean distances between the line segmentsL P

andM Q , anddP;Q is the distance between the 3D pointsP
andQ. Later, we will observe that the above simple geomet-
ric constraint reduces the search space for the pose problem
signi�cantly. We refer to this as pairwise cheirality due to
its resemblance to the classical cheirality constraint [12].
The classical one says that the scene points must lie in front
of the camera that view them.

(a) (b)
Figure 2.(a) We show the pairwise cheirality constraint for the
problem of pose estimation for PLMs. (b) The solution space for
correspondences between the individual line segments of a PLM
and the corresponding 3D points could be mapped to the enu-
meration of all possible maximum cliques of size 3 in a tri-partite
graph.

We will now describe a method to compute the possi-
ble correspondences satisfying the pairwise cheirality con-
straint. Consider the graph shown in Figure 2(b). Every
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nodeM ij represents the correspondence between thei th
point and thej th segment in the corresponding PLP. An
edge betweenM ij andM kl exists if two pairwise assign-
ments can happen simultaneously without con�icting with
each other. This implies that the pairwise assignment sat-
is�es the pairwise cheirality constraint given in equation1
and the uniqueness constraint. The uniqueness constraint
refers to the rule that the same 3D point cannot lie on two
different segments of the same PLP. Thus there is no edge
between anyM ij andM ik . All the candidate solutions are
given by the maximum cliques of the graph. The maximum
clique of a graph refers to the largest complete subgraph, i.e.
cliques, where every pair of nodes are connected by an edge.
Note that all the maximum cliques have size three because
the graph is tri-partite. Thus we identify triplet of nodes or
correspondences, where every pair of nodes is consistent. If
each PLP hasn segments, the brute force approach leads to
n3 candidates whereas our approach leads to a much lower
number of candidates as shown in section 5.

In the case of motion estimation we can have a similar
pairwise cheirality constraint for pairwise assignments.Let
us assume that for the correct transformation the pairs of
segments(L ; M ) and(R; S) intersect each other. The in-
tersection is only possible if the following two conditions
hold true:

dmin
L ;M < d max

R ;S and dmin
R ;S < d max

L ;M (2)

Similar to the pose estimation problem, the correspondence
problem for motion estimation can be mapped to the enu-
meration of maximum cliques of size 6 in a 6-partite graph.
These results are not entirely surprising because other corre-
spondence problems in computer vision have been mapped
to similar NP-hard problems before [7, 29]. For each candi-
date match, we compute the motion using generalized mo-
tion estimation algorithm and the correct solution is identi-
�ed using additional PLPs.

4. The parametric curve model

In the previous section we observed that the solution
space increases exponentially with the number of segments
in each PLP. In several natural phenomena, the light-path
contains in�nitely many small piece-wise segments as in
the case of mirages. For such light-paths, the algorithm
for PLM is infeasible. Here we show that despite the in-
�nitely many segments, pose and motion estimation algo-
rithms are feasible if the segments �t a simple parametric
curve like a conic. In order to do this we will represent the
light-path using a parametric curve, generally represented
as(x = x(t); y = y(t); z = z(t)) , wheret is an indepen-
dent parameter which helps us to navigate along the path of
the curve. A general polynomial parametric curve can be

given by:

x(t) =
nX

i =0

ai t i ; y(t) =
nX

i =0

bi t i ; z(t) =
nX

i =0

ci t i ; (3)

whereai , bi andci are coef�cients in the curve. In what
follows, we consider a simple parametric representation to
illustrate the basic ideas. We assume that the curves pass
through the optical center and the nonlinearity is only along
thex dimension. In the experiments, we use a similar model
for mirages. A parametric curve path (PCP) can be repre-
sented using the following form:

0

@
x(t)
y(t)
z(t)

1

A =

0

@
at2 + bt

ct
t

1

A (4)

wherea,bandc are the parameters of the curve. By varying
the parametert from 0 to 1 we can navigate along the path
of the curve. Such a curve is conic-shaped and an example
is shown in �gure 1(d).

4.1. Motion Estimation
Given two sets of corresponding projection curves from

two cameras, the goal is to compute a transformation such
that every projection curve intersects its counterpart. This
also means that there exists a common point on both the pro-
jection curves if they are expressed in a common reference
frame. For simplicity, we assume that one of the camera
is a PCM and the other one is a classical pinhole camera.
A parametric representation of the classical pinhole ray is
given below:

0

@
x(t2)
y(t2)
z(t2)

1

A =

0

@
a2t2

b2t2

t2

1

A (5)

Under a general motion of(R; T ) we have the following
equation:

µ
a1 t 1

2 + b1 t 1
c1 t 1
t 1

¶
= R

µ
a2 t 2
b2 t 2
t 2

¶
+

µ
T1
T2
T3

¶
(6)

Applying algebraic transformations we eliminatet1 andt2

and we get the equation
P 36

i =1 Ci Vi = 0 whereCi are func-
tions that depend on the known parametersa1, b1, c1, a2 and
b2. The coupled variablesVi are functions of the unknown
motion parameters.

The coupled variables can be estimated using singular
value decomposition. Using orthogonality constraints on
the rotation matrix the individual motion parameters can be
extracted from the coupled variables. The above method
needs at least 35 point correspondences, although the num-
ber of independent degrees of freedom is only 6. One can
also solve the pose estimation problem in a similar manner
and it is much simpler.
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(a) (b) (c) (d)

Figure 3.We show the simulation platform in (a) and (c). A single PLP is traced to a path containing 100 segments in (a). The PLP is
color-coded from red to blue, i.e., the initial segments are red and the �nal ones are blue. In (b) we show the comparison between brute
force search and our maximum clique algorithm for pose estimation. In (c) we show 6 PLPs with three segments each. In (d) we show
the comparison between brute force search and our algorithm for generating the candidate solutions for motion estimation.[best viewed in
color]

5. Experiments
Simulations for PLM: We show the simulation platform
in Figure 3. The camera is at one of the corners of a cube of
dimension100. The camera is facing the inside of the cube
whose six walls are re�ective. Using a simple ray-tracing
technique we obtain light-paths with as many segments as
possible starting with random directions from the origin.
This allows us to generate PLPs of any length for a given
pixel in the image with known calibration parameters. In
order to simulate the pose estimation experiment, we gen-
erated random PLPs each of lengthn. The PLP for a single
pixel having 100 segments2 is shown in Figure 3(a). We
select a random segment in each PLP and select a random
point on it. We generate one 3D point for every PLP. These
points were rotated and translated by a random transforma-
tion matrix. We used our search strategy to generate all the
candidate solutions. In Figure 3(b) we show the reduction
in solution space using our maximum clique formulation.
Using 4 or more points, we were able to compute the exact
pose from PLPs having as many as 100 segments. The algo-
rithm identi�ed the correct segments even in the presence of
noise. Note that only the candidate matches are generated
using the minimal set of 3 correspondences. For each can-
didate match, we compute the pose using generalized pose
estimation algorithm and check its validity using additional
points. The computed pose is checked using a few other
points. In general 4 points were suf�cient to identify the
correct pose. The solution space for pose estimation isn3

using a brute force search. The number of candidates ob-
tained by the enumeration of the maximum cliques is much
lower, as shown in Figure 3(b).

We used a similar simulation platform for testing the mo-
tion estimation algorithm. It is dif�cult to generate matches,

2The experimental setup is inspired by the illumination problem, where
light-paths are inde�nitely traced inside a mirror-walled polygon.

since this involves �nding PLPs in two cameras that inter-
sect each other, which is a hard problem. In the �rst cam-
era, we generate PLPs of arbitrary length. Seven or more
random points were chosen on random segments in each
PLP. These points were rotated and translated by a random
transformation matrix. For the second camera we used a
single bounce to reach the camera center. In other words,
we were able to compute PLPs for the second camera of
length 2. Note that the solution space of motion estimation
is extremely large compared to the pose estimation prob-
lem. For two sets of PLPs, each of lengthn, the overall
solution space using brute force search isn12. Using our
maximum clique formulation we reduced the search space
signi�cantly.

Real Experiments for PLM: We show results for real ex-
periments with the setup shown in Figure 4. Testing was
done using two mirrors and considering light-paths up to
length 3. The planar mirrors are squares of size 304 mm
each. The cube is of size 127 mm. The correspondences are
given manually in the images. Note that automatic match-
ing algorithms that are invariant to mirror �ips could also
be used to match point features. We used images of size
2272£ 1704. The main challenge was the precise calibra-
tion of the two mirrors. Using the initial calibration of the
mirrors we did a bundle adjustment from known calibration
grid points after multiple re�ections. This improved the ori-
entation of the planes signi�cantly and the setup was precise
enough for our experiments. We believe that this idea of op-
timizing on the light-paths after multiple re�ections would
prove useful for several other catadioptric con�gurations.
After computing the motion, we reconstructed the cube by
intersecting the correct segments of the matching PLPs. We
measured the error using the difference between the ground-
truth data and the reconstructed model. The overall RMS
errors in pose and 3D reconstruction results are 8 mm and
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15 mm respectively. Note that this error is without any fur-
ther re�nement using bundle adjustment.

Degeneracy: Axial cameras refer to a class of cameras
where all the projection rays intersect in a single line in
space [24]. During the experiments, we observed that the
axial con�guration might be a degenerate case for the 6-
point motion estimation algorithm [26]. In our real and syn-
thetic experiments, we did not use an axial con�guration.

(a) (b)

(c)

Figure 4.(a) and (b) are two images captured from the same pre-
calibrated setup using a single camera and two mirrors. The cube
is rotated and translated between the two views. The correspon-
dences are given manually. Every 3D point occurs multiple times
in the images. Our algorithm can work with any correct match.
The reconstructed cube and the PLPs are shown in (c). The cor-
rect segment is automatically identi�ed and it is shown in blue.
[best viewed in color]

Modeling PCMs using conics: We simulated a PCM
whose projection curves are conic-shaped. Images of 3D
synthetic models of a unit cube are generated using non-
linear ray tracing. Algorithms such as motion estimation
and 3D reconstruction were tested. The concept of epipolar
lines generalizes to epipolar curves. Analogously epipolar
planes manifest themselves as epipolar surfaces. The basic
idea is very simple; for every pixelx in the left image we
look at all the pixels in the right image whose rays intersect
the ray associated with pixelx. In �gure 5, the synthesized

images and the epipolar curves on both the PCM and the
pinhole images are shown.

(a) (b)

(c) (d)

Figure 5.(a) and (b) show synthesized images of the inside of a
cube using a PCM and a pinhole respectively. (c) Epipolar curve
on the PCM image is shown. This curve is obtained by collecting
the pixels whose projection rays (conic-shaped rays) intersect a
projection ray (a straight line) of pixelx0 in the pinhole image.
(d) The epipolar curve on the pinhole image is the set of pixels
whose projection rays intersect the conic-shaped ray of pixelx in
the PCM image.

Simulation of Mirages: We use a physics based model-
ing for mirages [2, 18]. Mirages occur when the refractive
index of air changes from one region to another. When a
light ray passes from one medium to another having differ-
ent refractive indices, its path is determined by Snell's law.
In our modeling the atmosphere is sliced into very small
layers of constant refractive index each and we use Snell's
law at each boundary. We show the path of a mirage ray in
�gure 6. The light ray enters at an angle ofµ with respect
to the vertical. Letn be the refractive index at the starting
point (y = 0 ). Let m refer to the parameter that describes
the variation in refractive index relative to altitude. Thus
the refractive index for a speci�c altitudey is n + my. The
parametric model for the light rays during the formation of
mirages is given below:

0

@
x(t)
y(t)
z(t)

1

A =

0

@
c
t

f (t; k; m; n )

1

A (7)

where

f (t; k; m; n ) =
k
m

log(mt + n +
p

(mt + n)2 ¡ k2) ¡

k
m

log(n +
p

n2 ¡ k2) (8)
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wherec refers to a constant andk is given bynsin (µ). The
above equation refers to the mirage ray corresponding to
one pixel in the image. We assume that all mirage rays cor-
responding to pixels in one vertical scanline in the image lie
on a single plane.

Figure 6.A single light curve during the formation of a mirage.
Note that the curve undergoes total internal re�ection (TIR) and
changes its path.

During the formation of a mirage, total internal re�ec-
tion (TIR) also takes place as shown in �gure 6. We refer to
the point at which TIR happens as theturning point. When
a light ray passes into a less dense medium and the angle
of incident light is greater than the critical angle, TIR takes
place. In our work, we compute the turning point, shift the
origin to this point, and �nally update the incident angle. In
other words, the initial part of the ray is not useful to model
the mirages. Thus we remove this part and model the re-
maining projection curve. Using Taylor expansion, one can
show that the above model for mirages shown in Equation 8
can be approximated by the following parametric curve:

0

@
x(t)
y(t)
z(t)

1

A =

0

@
f

dt + e
at2 + bt + c

1

A (9)

wherea; b; c; d; eandf are known constants that describe
the path of the light ray. Note that the above approxima-
tion is valid for typical values ofm, which is very small for
normal temperature variations.

Mirage simulation and testing: We test the accuracy of
our modeling using a synthesize-and-compare algorithm.
For a given image of the mirage we approximate the differ-
ent objects in the image as planar segments. For example in
Figure 8, the desert image has two types of planes: vertical
planes corresponding to the trees and a horizontal plane cor-
responding to the ground. We use different depth values for
the trees and synthesize mirages by non-linear ray-tracing
[2, 18]. We synthesize mirages for different values of the
calibration parameters: change in refraction index (m), �eld
of view and scaling along z and y axis. For example in Fig-
ure 7, we show the synthesis of mirages for different values
of m. In order to do the synthesis we used a pixel shader
program in GPU to generate several mirages per second and

do the matching. By doing chamfer matching between the
synthesized and real images of the mirages we were able
to optimize on the chosen parameters. Some of the results
based on this matching are shown in �gure 8. Testing the
motion estimation and pose estimation algorithms for real
images of mirages are very challenging and they are still
unresolved problems. The main bottleneck is the lack of
real data. In order to test motion estimation, we need two
images of mirages of the same scene from different view-
points along with the calibration parameters. The pose esti-
mation requires a known object in the scene along with the
mirage parameters.

6. Discussion
We made a few non-trivial observations of light-paths us-

ing theoretical analysis, simulations and real experiments.
We still believe that the experiments do not convey the gen-
erality of the proposed technique. Note that once the light-
paths are known, our techniques can apply to several scenar-
ios like refraction through water or glass and re�ections on
arbitrary shaped mirrors. Computation of long light-paths
(3 or more segments) in these scenarios is an active area
of research and involve specialized calibration techniques,
which is not the main focus of this paper. We believe that
the ability to compute pose and motion in such challenging
scenarios will spur further research in exact light-path com-
putation techniques and their utilization in applications.

We used simple optimization techniques to study PLMs
and PCMs. For example, we enumerated all the maxi-
mum cliques in a graph using a simple tree-based search.
We could use ef�cient branch and bound techniques to im-
prove the performance. The use of Groebner basis solvers
[15] might also prove bene�cial for modeling higher degree
curves in PCMs.
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