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Abstract —
This paper extends classical object pose and relative z

camera motion estimation algorithms for imaging sensors
sampling the scene through light-paths. Many algorithms
in multi-view geometry assume that every pixel observes
light traveling in a single line in space. We wish to relax
this assumption and address various theoretical and prac-
tical issues in modeling camera rays as piece-wise linear-
paths. Such paths consisting of nitely many linear seg-
ments are typical of any simple camera con guration with
re ective and refractive elements. Our main contributien i |
to propose ef cient algorithms that can work with the com- (a) (b)
plete light-path without knowing the correspondence be-
tween their individual segments and the scene points. Sec-
ond, we investigate light-paths containing in nitely many
and small piece-wise linear segments that can be mod-
eled using simple parametric curves such as conics. We
show compelling simulations and real experiments, involv-
ing catadioptric con gurations and mirages, to validaterou
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Figure 1.A setup with three planar mirrors and a camera facing
1. Introduction and motivation two of them is shown in (a). The light-path for a chosen pixel is

The bending of light rays is a very common natural phe- shown in (b). The main highlight of this paper is to extend the

nomenon producing very many optical effects: re ection on chssmaI pose.and motion estimation algorithms for such paths
L. . . without any prior knowledge about the correspondence between
water, refraction in a dew drop on a leaf, distortion of un-

d bi hi - g ‘ he bl the scene point and the individual segment in the piece-wise linear
erwater objects, shimmering on a road's surface, the uepaths. We show a cube imaged using a pinhole camera in (c). By

oasis in the desert, rainbows, lingering sunset, halo sur-gampjing light along a parametric curve shown in (d), we synthe-
rounding the sun and twinkling stars are just a few exam- sjze the same cube in (e).
ples. Despite the signi cant progress made by the vision
and graphics communities toward realistic models, we aregle straight line in space. We wish to relax this assumption
still far from modeling the extreme complexity of light. and associate several piece-wise linear segments to & sing|
Many algorithms in multi-view geometry use either the pixel and propose pose and motion estimation algorithms.
pinhole model, where light rays pass through a single op- In particular we wish to study this problem without using
tical center, or a non-central model where every pixel is any prior knowledge about the segment of the light-path in-
mapped to an arbitrary projection ray. Non-central cam- teracting with the scene. One may wonder: Why is this
era models have been studied in the context of catadioptricgenerality necessary? Consider Figure 1(a) where we show
con gurations [9, 17, 21, 28] and most multi-view geom- a simple con guration with three mirrors and a camera. Af-
etry algorithms have been extended to such models. Mostter two or three bounces with two mirrors, it becomes ex-
of these algorithms assume that a pixel is mapped to a sintremely dif cult to know the correspondence between the
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scene point and its associated segment in the light-path. is possible to extend the pose estimation for light-paths
There is a wide body of literature on reconstruction al- having more than 100 segments.
gorithms involving specular objects [4, 30] (re ective and
refractive}. In specular stereo works [3, 20], the path of the
light ray, before and after re ection, is studied to recover
the shape of mirror-like objects from two views. Ben-Ezra
and Nayar detect and reconstruct transparent objects from a
sequence of images taken under known motion [1]. Here,
a physics based modeling approach is taken to handle re- ] ] .
fraction and to reconstruct the shape of transparent abject OVerview of the paper:  In section 2 we introduce and de-
in the form of super-ellipsoids. Kutulakos and Steger have VelOp pose and motion estimation algorithms for PLMs. In
shown some inspiring results in reconstructing specular ob S€ction 3 we propose an ef cient search algorithm for nd-
jects by recovering the path of a light ray after it undergoes INd the correspondence between the individual segment of a
refraction [16]. In order to recover the light-path they use Pi€ce-wise linear light-path and a scene point. In section 4
reference 3D points whose coordinates are known with re-We introduce and develop multi-view geometry algorithms
spect to the camera. Although we also recover the light- for _PCMs. In section 5 we show S|mulat|0ns_ and real ex-
paths accurately using non-trivial techniques for ingesti ~ Periments to validate our theory. We use simple camera
tion purposes, our main contribution is not the light-path €ON gurations with pllanar mirrors to show the results for
computation. Rather, we search for scene points on the dif-PLMs and use real images of mirages to demonstrate the
ferent segments of the known light-path using pose estima-results for PCMs.
tion and motion e_stlmafu_on a_Igorlthms. Chari and _Sturm de- 2. The piece-wise linear model
veloped geometric entities like fundamental matrix for un-
derwater scenarios [5]. Seitz et al. [25] have investigated Every pixel samples light in a piece-wise linear path de-
the multi-bounce nature of light-paths for decomposing im- noted by a sequence of 3D poirfeg; P1;:::; P, wheren
ages and removing inter re ections. Recently Kirmani et is the number of segments. We refer to this path as PLP. In
al. [14] used multi-path analysis of light transport to neco ~ Figure 1(a), we show a con guration consisting of three pla-
struct the geometry of hidden regions, which are not in the nar mirrors and a camera facing two of them. The camera
line of sight of the camera. is facing the back-side of one of the mirrors. For a chosen
In this paper, we also investigate algorithms for light- pixel shown on the image, we trace the corresponding PLP.
paths containing in nitely many and small piece-wise lin- It consists of the segmentP3, P3Pz, P2P1 andP1Po.
ear segments that can be modeled using conics. AlthougHn a PLM all pixels are associated to such paths and we as-
we are not familiar with any prior work for optical images, sume that they are pre-calibrated. We refer to an object or
Hartley and Saxena have used curved projection rays forthe scene as not being part of the PLM. As an object enters
modeling SAR imagery [13]. the eld of view of a PLM, every point on the object will
We summarize our main contributions below: lie on multiple segments in various PLPs. This is the reason
for observing the same 3D point at multiple places in the
image. However, for a given pixel, the corresponding scene
point lies in general on only one segment of the pixel's PLP.
For example the scene poiBt corresponding to the cho-
sen pixel resides on the segménPs. In general it is not
easy to identify this association between the segment and
2 We show that the correspondence problem between a3D point even manually when there are multiple segments
scene point and the individual segments of the piece-in a light-path. We explore the feasibility of nding this
wise linear path can be mapped to the enumeration ofcorrespondence automatically while we solve the pose and
all the maximum cliques in an associated graph. motion estimation problems.

We show compelling simulations and real experiments
to validate our theory for PLMs and PCMs. To work
with real images of mirages, we include a practical
method to compute the refraction parameters from an
image of a mirage.

2 We develop pose and motion estimation algorithms for
cameras where each pixel samples light traveling in a
piece-wise linear path or a parametric curve. We refer
to these cameras as piece-wise linear model (PLM) and
parametric curve model (PCM).

2 The main contribution of this paper is an ef cientalgo- 2.1. Pose Estimation

rithm for PLMs that can work with a large number of  Gjyen three correspondences between points in the world
piece-wise segments. We propose an extremely usefulynq their projections on the images, the goal is to com-
pairwise chelrallty_ constraint that allow_s one to search pute the pose of the camera in the world coordinate sys-
in the large solution space to solve light-paths with tem_ For the pinhole model, many solutions have been pro-
nitely many segments. In particular, we show that it 5seq in the literature - Grunert [10], Fischler and Bolles
Iwe do not address the problem of diffusion where a singlét ligi [8], Church’s method [6], Haralick et al. [11], to name but
may get split into in nitely many rays. a few references. One can also compute pose using both
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points and lines [22], but in this paper we focus on only motion using the above generalized motion estimation al-
points. Recently, there has been algorithms for developinggorithm. A correct transformation could be easily veri ed
pose estimation using three points for non-central or gener by checking if at least one segment of every PLP intersect at
alized cameras [19, 23]. In a generalized camera model, evleast one segment of its corresponding PLP. Similar to the
ery pixel is mapped to a projection ray in space along which pose estimation problem, we could employ a brute force
it samples light [9, 27]. Mathematically, the minimal pose search to generate all possible correspondences. However,
estimation problem is described as follows. Given 3 points this is even harder than the pose problem. Using a pairwise
and 3 rays in different coordinate frames, nd a rigid trans- cheirality constraint we reduce the search space and solve
formation such that the points are incident with their cor- the motion estimation.

responding rays. In this problem, the number of rays and3 The correspondence problem

points is minimal for computing the transformation. This We describe th o nden roblem for th
algorithm gives 8 solutions in general and additional corre . < describe the correspondence probiem for the pose es-
gmanon problem in detail. The algorithm for motion es-

spondences are used to prune the ones inconsistent with th .
b P timation can be analogously developed. In order to ef -

other matches. This algorithm is generally employed in a . " ve th q bl maril
hypothesize-and-test framework such as RANSAC [8]. We ciently solve the correspondence probiem we primarily use
one geometric constraint. This constraint is a pairwise one

use this algorithm as the basic block for developing ours. . .
We briey describe the pose estimation problem for wherz We can Jo".m.y t? hethT dvvthethelr tv;é‘.) pom;—PLP cgrre-
PLMs. Given three scene points and their correspondingSpon ences can jointly hold true. In Figure @), an
M o are two segments from two different PLPs. In order

pixels, thus their corresponding PLPs, our goal is to com- .
pute a transformation such that each point lies on one offor the 3D pointsP _andQ tq _correspond 0 s_egmerltsp
andM q, the following condition must be satis ed:

the segments in its corresponding PLP. Once the correspon
dence between points and line segments is established, we i e

may compute the pose using the above generalized pose es- LpiM g dpg - A Tm Q @)
timation algorithm. A correct transformation could be eas-
ily veri ed by checking if at least one segment of every PLP imum Euclidean distances between the line segmepts

contains the corresponding scene point. Thus the remainingand,vI o, andde.g is the distance between the 3D poiRts
l P;

missing block in developing a pose estimation algorithm IS andQ. Later, we will observe that the above simple geomet-
to compute the correspondence between the segments in a :
: . : ric constraint reduces the search space for the pose problem

PLP and its corresponding point. One can use a brute force_.” . : S .
: . signi cantly. We refer to this as pairwise cheirality due to

search strategy to generate a lot of poses and identify the

T : its resemblance to the classical cheirality constraini.[12
correct pose from them. However, this is infeasible when y L

. . The classical one says that the scene points must lie in front
there are many segments in each PLP. In section 3 we pro- Y P

. .~ "'~ of the camera that view them.
pose an ef cient search strategy to solve the pose estimatio
problem using a pairwise cheirality constraint. Withotisth
constraint, the exhaustive search is highly infeasible.

2.2. Motion Estimation

The underlying mathematical problem for generalized
motion estimation is brie y described here: Given two sets
of 6 rays each, the goal is to rotate and translate one set suct
that every ray in one set intersects its corresponding ray in
the other. Ste@nius et al. gave the solution for generalized
cameras that leads to 64 solutions [26]. We can use addi- . )
tional correspondences to prune the ones that are inconsis-

. . . . (a) (b)
tent with other matches. This algorithm will be used as the Figure 2.(a) We show the pairwise cheirality constraint for the
basic block for developing the motion estimation algorithm problem of pose estimation for PLMs. (b) The solution space for
for PLMs. correspondences between the individual line segments of a PLM

We brie y describe the motion estimation problem for and the corresponding 3D points could be mapped to the enu-
PLMs. Given correspondences between two sets of 6 PLPgneration of all possible maximum cliques of size 3 in a tri-partite
in two cameras, the goal is to compute a transformation suchdraph.
that one segment in a PLP from the rst set intersects with
at least one segment in its corresponding PLP in the sec- We will now describe a method to compute the possi-
ond set. Once the correspondence between the segmentsde correspondences satisfying the pairwise cheirality co
in every pair of PLP is established, we may compute the straint. Consider the graph shown in Figure 2(b). Every

whered™. . andd"®,, are the minimum and max-
P Q P Q
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nodeMj represents the correspondence betweeritthe  given by:
point and thej th segment in the corresponding PLP. An
edge betweeM;; andMy; exists if two pairwise assign-
ments can happen simultaneously without con icting with
each other. This implies that the pairwise assignment sat-
is es the pairwise cheirality constraint given in equatibn  wherea;, b andc; are coef cients in the curve. In what
and the uniqueness constraint. The uniqueness constrainfollows, we consider a simple parametric representation to
refers to the rule that the same 3D point cannot lie on two illustrate the basic ideas. We assume that the curves pass
different segments of the same PLP. Thus there is no edgehrough the optical center and the nonlinearity is only glon
between anMj andM i . All the candidate solutions are thex dimension. In the experiments, we use a similar model
given by the maximum cliques of the graph. The maximum for mirages. A parametric curve path (PCP) can be repre-
clique of a graph refers to the largest complete subgraph, i. sented using the following form:

x() = at,y®)= bty z)=  at; 3
i=0 i=0 i=0

cliques, where every pair of nodes are connected by an edge. 1

Note that all the maximum cliques have size three because X(t) at® + bt

the graph is tri-partite. Thus we identify triplet of nodes o @yt A=@ ¢t A (4)
correspondences, where every pair of nodes is consistent. | z(t) t

each PLP has segments, the brute force approach leads to

n® candidates whereas our approach leads to a much |0wey;/1herea,bandcfare the parameters of the cur\I/e. Byhvarylnhg
number of candidates as shown in section 5. the parameterfromOto1 we can navigate along the pat

. N .. of the curve. Such a curve is conic-shaped and an example
In the case of motion estimation we can have a similar

I o . C : is shown in gure 1(d).
pairwise cheirality constraint for pairwise assignmehtst ) o
us assume that for the correct transformation the pairs of4.1. Motion Estimation

segmentgL ;M ) and(R; S) intersect each other. The in- Given two sets of corresponding projection curves from
tersection is only possible if the following two conditions two cameras, the goal is to compute a transformation such
hold true: that every projection curve intersects its counterpartis Th
also means that there exists a common point on both the pro-
T!RA <dP%  and gms < dmax @) jection curves if they are expressed in a common reference

frame. For simplicity, we assume that one of the camera

o o is a PCM and the other one is a classical pinhole camera.
Similar to the pose estimation problem, the correspondencea parametric representation of the classical pinhole ray is
problem for motion estimation can be mapped to the enu-given below:

meration of maximum cliques of size 6 in a 6-partite graph.

. . 0 1 0
These results are not entirely surprising because otheg-cor X(t2) asts
spondence problems in computer vision have been mapped @ y(ty,) A= @ bt, A (5)
to similar NP-hard problems before [7, 29]. For each candi- z(tp) to

date match, we compute the motion using generalized mo-
tion estimation algorithm and the correct solution is ident Under a general motion fR; T) we have the following

ed using additional PLPs. equation:
. u a1t12+ bity ﬂ u axtay 1-[ u T1 T[
4. The parametric curve model city =R bt, + T. (6)
t1 t2 3

In the previous section we observed that the solution
space increases exponentially with the number of segment£\PPlying algebraic trapsformations we eliminaieandt,
in each PLP. In several natural phenomena, the light-pathand we get the equation =, C;Vi = 0 whereC; are func-
contains in nitely many small piece-wise segments as in tions that depend on the known parameggrs, ¢, a; and
the case of mirages. For such light-paths, the algorithm 2- The coupled variableg; are functions of the unknown
for PLM is infeasible. Here we show that despite the in- Motion parameters.
nitely many segments, pose and motion estimation algo- The coupled variables can be estimated using singular
rithms are feasible if the segments t a simple parametric Value decomposition. Using orthogonality constraints on
curve like a conic. In order to do this we will represent the the rotation matrix the individual motion parameters can be

light-path using a parametric curve, generally represknte extracted from the qoupled variables. The above method
as(x = x(t);y = y(t);z = z(t)), wheret is an indepen- needs at least 35 point correspondences, although the num-
dent parameter which helps us to navigate along the path of?er of independent degrees of freedom is only 6. One can

the curve. A general polynomial parametric curve can be also_splve the pose estimation problem in a similar manner
and it is much simpler.
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Figure 3.We show the simulation platform in (a) and (c). A single PLP is traced to a pattaitong 100 segments in (a). The PLP is
color-coded from red to blue, i.e., the initial segments are red and theonas are blue. In (b) we show the comparison between brute
force search and our maximum clique algorithm for pose estimation. Inéc3hew 6 PLPs with three segments each. In (d) we show
the comparison between brute force search and our algorithm for géngrhe candidate solutions for motion estimatjbest viewed in
color]

5. Experiments since this involves nding PLPs in two cameras that inter-

Simulations for PLM:  We show the simulation platform  Sect each other, which is a hard problem. In the rst cam-
in Figure 3. The camera is at one of the corners of a cube ofera, we generate PLPs of arbitrary length. Seven or more
dimension100. The camera is facing the inside of the cube random points were chosen on random segments in each
whose six walls are re ective. Using a Simp|e ray-tracing PLP. These pOintS were rotated and translated by a random
technique we obtain light-paths with as many segments astransformation matrix. For the second camera we used a
possible starting with random directions from the origin. Single bounce to reach the camera center. In other words,
This allows us to generate PLPs of any length for a given We were able to compute PLPs for the second camera of
pixe| in the image with known calibration parameters_ In Iength 2. Note that the solution space of motion estimation
order to simulate the pose estimation experiment, we gen-iS extremely large compared to the pose estimation prob-
erated random PLPs each of lengthThe PLP for a single ~ lem. For two sets of PLPs, each of lengththe overall
pixel having 100 segmerftss shown in Figure 3(a). We solution space using brute force searcmi8. Using our
select a random segment in each PLP and select a randorffaximum clique formulation we reduced the search space
point on it. We generate one 3D point for every PLP. These Signi cantly.

points were rotated and translated by a random transforma- .

tion matrix. We used our search strategy to generate all theR€al Experiments for PLM:  We show results for real ex-
candidate solutions. In Figure 3(b) we show the reduction PEriments with the setup shown in Figure 4. Testing was
in solution space using our maximum clique formulation. done using two mirrors and considering light-paths up to
Using 4 or more points, we were able to compute the exactlength 3. The pllanar mirrors are squares of size 304 mm
pose from PLPs having as many as 100 segments. The algo@f"‘Ch- The cube is of size 127 mm. The correspondences are
rithm identi ed the correct segments even in the presence of91ven manually in the images. Note that automatic match-
noise. Note that only the candidate matches are generatedd @lgorithms that are invariant to mirror ips could also
using the minimal set of 3 correspondences. For each canP€ used to match point features. We used images of size
didate match, we compute the pose using generalized pos€272£ 1704 The main challenge was the precise calibra-
estimation algorithm and check its validity using addibn ~ tion of the two mirrors. Usllng the initial cal|brat|on.of the
points. The computed pose is checked using a few otherMirrors we did abundle adjustment fro_m_known callbratlon
points. In general 4 points were suf cient to identify the grid pomts after multlple_z re ections. This improved the-or_
correct pose. The solution space for pose estimatioris ~ €ntation of the planes signi cantly and the setup was peecis
using a brute force search. The number of candidates ob-£nough for our experiments. We believe that this idea of op-

tained by the enumeration of the maximum cliques is much timizing on the light-paths after multiple re ections walil
lower, as shown in Figure 3(b). prove useful for several other catadioptric con gurations

After computing the motion, we reconstructed the cube by
intersecting the correct segments of the matching PLPs. We
measured the error using the difference between the ground-
2The experimental setup is inspired by the illumination prolahere  tTUth dfita and the reconstructed mOdeI- The overall RMS
light-paths are inde nitely traced inside a mirror-walledlygon. errors in pose and 3D reconstruction results are 8 mm and

We used a similar simulation platform for testing the mo-
tion estimation algorithm. It is dif cult to generate mats)
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15 mm respectively. Note that this error is without any fur- images and the epipolar curves on both the PCM and the
ther re nement using bundle adjustment. pinhole images are shown.

Degeneracy: Axial cameras refer to a class of cameras
where all the projection rays intersect in a single line in
space [24]. During the experiments, we observed that the
axial con guration might be a degenerate case for the 6-
point motion estimation algorithm [26]. In our real and syn-
thetic experiments, we did not use an axial con guration.

(@) (b)

projection
curve inhol
projection pinhole
. curves Srays
e §
pinhole ray
(@) (b) \O 0.
[} U O

(©) (d)
Figure 5.(a) and (b) show synthesized images of the inside of a
cube using a PCM and a pinhole respectively. (c) Epipolar curve
on the PCM image is shown. This curve is obtained by collecting
the pixels whose projection rays (conic-shaped rays) intersect a
projection ray (a straight line) of pixex° in the pinhole image.
(d) The epipolar curve on the pinhole image is the set of pixels
whose projection rays intersect the conic-shaped ray of pixal
the PCM image.
Simulation of Mirages: We use a physics based model-
ing for mirages [2, 18]. Mirages occur when the refractive
index of air changes from one region to another. When a
light ray passes from one medium to another having differ-
ent refractive indices, its path is determined by Snells la
In our modeling the atmosphere is sliced into very small
layers of constant refractive index each and we use Snell's
law at each boundary. We show the path of a mirage ray in

(©
Figure 4.(a) and (b) are two images captured from the same pre-
calibrated setup using a single camera and two mirrors. The cube

is rotated and translated between the two views. The correspon- ure 6. The light rav enters at an anale ofwith respect
dences are given manually. Every 3D point occurs multiple times 9 ) 9 Y gep P

in the images. Our algorithm can work with any correct match. to ,the vertical. Len be the refractive index at the start.ing

The reconstructed cube and the PLPs are shown in (c). The cor-POINt (/ = 0). Letm refer to the parameter that describes

rect segment is automatically identi ed and it is shown in blue. the variation in refractive index relative to altitude. Bhu

[best viewed in color] the refractive index for a speci c altitudgisn + my. The
parametric model for the light rays during the formation of

Modeling PCMs using conics: We simulated a PCM  mirages is given below:

whose projection curves are conic-shaped. Images of 3D 0 X(t) 1 0 c 1

synthetic models of a unit cube are generated using non- @y(t) A =@ t A @

linear ray tracing. Algorithms such as motion estimation 2(1) f(tk;m:n)

and 3D reconstruction were tested. The concept of epipolar T

lines generalizes to epipolar curves. Analogously epipola where

planes manifest themselves as epipolar surfaces. The basic p

idea is very simple; for every pixel in the left image we ~ f(tkimin) = —log(mt+n+  (mt+ n2i k2) i

look at all the pixels in the right image whose rays intersect Kk

the ray associated with pixgl In gure 5, the synthesized — log(n + nZj k2) (8)
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wherec refers to a constant ardis given bynsin (). The do the matching. By doing chamfer matching between the

above equation refers to the mirage ray corresponding tosynthesized and real images of the mirages we were able

one pixel in the image. We assume that all mirage rays cor-to optimize on the chosen parameters. Some of the results

responding to pixels in one vertical scanline in the image li based on this matching are shown in gure 8. Testing the

on a single plane. motion estimation and pose estimation algorithms for real
images of mirages are very challenging and they are still
unresolved problems. The main bottleneck is the lack of
real data. In order to test motion estimation, we need two
images of mirages of the same scene from different view-
points along with the calibration parameters. The pose esti
mation requires a known object in the scene along with the
mirage parameters.

6. Discussion

We made a few non-trivial observations of light-paths us-
Figure 6.A single light curve during the formation of a mirage. N9 theoretical analysis, simulations and real experisent
Note that the curve undergoes total internal re ection (TIR) and \We still believe that the experiments do not convey the gen-
changes its path. erality of the proposed technigue. Note that once the light-
paths are known, our techniques can apply to several scenar-
ios like refraction through water or glass and re ections on
arbitrary shaped mirrors. Computation of long light-paths
3 or more segments) in these scenarios is an active area
f research and involve specialized calibration techrgégue
which is not the main focus of this paper. We believe that
the ability to compute pose and motion in such challenging
scenarios will spur further research in exact light-patme¢o
putation techniques and their utilization in applications
We used simple optimization techniques to study PLMs
and PCMs. For example, we enumerated all the maxi-
mum cliques in a graph using a simple tree-based search.
We could use ef cient branch and bound techniques to im-

During the formation of a mirage, total internal re ec-
tion (TIR) also takes place as shown in gure 6. We refer to
the point at which TIR happens as ttuening point When
a light ray passes into a less dense medium and the angl
of incident light is greater than the critical angle, TIRdak
place. In our work, we compute the turning point, shift the
origin to this point, and nally update the incident angle. |
other words, the initial part of the ray is not useful to model
the mirages. Thus we remove this part and model the re-
maining projection curve. Using Taylor expansion, one can
show that the above model for mirages shown in Equation 8
can be approximated by the following parametric curve:

x(t) Lo f ! prove the performance. The use of Groebner basis solvers
@Qyit) A=@ dt+e A ©) [15] might also prove bene cial for modeling higher degree
z(t) at? + bt+ ¢ curves in PCMs.
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wherea; b; c; d; eandf are known constants that describe
the path of the light ray. Note that the above approxima-
tion is valid for typical values o, which is very small for
normal temperature variations.
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our modeling using a synthesize-and-compare algorithm.
For a given image of the mirage we approximate the differ-
ent objects in the image as planar segments. For example in
Figure 8, the desert image has two types of planes: vertical Computer Graphics and Application990.

planes corresponding to the trees and a horizontal plane cor [3] T.Bonfortand P. Sturm. Voxel carving for specular surfaces
responding to the ground. We use different depth values for In ICCV. 2003.

the trees and Synth(?Size mirages by _non'"near ray-tracing [4] G.D.Canas, Y. Vasilyev, Y. Adato, T. Zickler, S. Gortler, and
[2, 18]. We synthesize mirages for different values of the O. Ben-Shahar. A linear formulation of shape from specular
calibration parameters: change in refraction index (mid e ow. In ICCV, 20009.
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[1] M. Ben-Ezra and S. Nayar. What does motion reveal about
transparency? I[CCV, 2003.
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(a) (b) (©) (d) (e) ® ()] (h)
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